Sodium-level-sensitive sodium channel Na(x) is expressed in glial laminate processes in the sensory circumventricular organs.

نویسندگان

  • Eiji Watanabe
  • Takeshi Y Hiyama
  • Hidetada Shimizu
  • Ryuji Kodama
  • Noriko Hayashi
  • Seiji Miyata
  • Yuchio Yanagawa
  • Kunihiko Obata
  • Masaharu Noda
چکیده

Na(x) is an atypical sodium channel that is assumed to be a descendant of the voltage-gated sodium channel family. Our recent studies on the Na(x)-gene-targeting mouse revealed that Na(x) channel is localized to the circumventricular organs (CVOs), the central loci for the salt and water homeostasis in mammals, where the Na(x) channel serves as a sodium-level sensor of the body fluid. To understand the cellular mechanism by which the information sensed by Na(x) channels is transferred to the activity of the organs, we dissected the subcellular localization of Na(x) in the present study. Double-immunostaining and immunoelectron microscopic analyses revealed that Na(x) is exclusively localized to perineuronal lamellate processes extended from ependymal cells and astrocytes in the organs. In addition, glial cells isolated from the subfornical organ, one of the CVOs, were sensitive to an increase in the extracellular sodium level, as analyzed by an ion-imaging method. These results suggest that glial cells bearing the Na(x) channel are the first to sense a physiological increase in the level of sodium in the body fluid, and they regulate the neural activity of the CVOs by enveloping neurons. Close communication between inexcitable glial cells and excitable neural cells thus appears to be the basis of the central control of the salt homeostasis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CALL FOR PAPERS Neurohypophyseal Hormones: From Genomics and Physiology to Disease Sodium-level-sensitive sodium channel Nax is expressed in glial laminate processes in the sensory circumventricular organs

Eiji Watanabe, Takeshi Y. Hiyama, Hidetada Shimizu, Ryuji Kodama, Noriko Hayashi, Seiji Miyata, Yuchio Yanagawa, Kunihiko Obata, and Masaharu Noda Laboratory of Neurophysiology, Division of Molecular Neurobiology, and Laboratory of Morphodiversity, National Institute for Basic Biology, Okazaki, Aichi; School of Life Science, The Graduate University for Advanced Studies, Okazaki, Aichi; Departme...

متن کامل

Hydromineral neuroendocrinology: mechanism of sensing sodium levels in the mammalian brain.

Dehydration causes an increase in the sodium (Na) concentration and osmolarity of body fluids. For Na homeostasis of the body, control of Na and water intake and excretion are of prime importance. Although the circumventricular organs (CVOs) were suggested to be involved in body-fluid homeostasis, the system for sensing Na levels within the brain, which is responsible for the control of Na- and...

متن کامل

The subfornical organ, a specialized sodium channel, and the sensing of sodium levels in the brain.

Dehydration causes an increase in the sodium (Na) concentration and osmolarity of body fluid. For Na homeostasis of the body, controls of Na and water intake and excretion are of prime importance. However, though the circumventricular organs (CVOs) are suggested to be involved in body-fluid homeostasis, the system for sensing the Na level within the brain that is responsible for the control of ...

متن کامل

Channel Properties of Nax Expressed in Neurons

Nax is a sodium-concentration ([Na+])-sensitive Na channel with a gating threshold of ~150 mM for extracellular [Na+] ([Na+]o) in vitro. We previously reported that Nax was preferentially expressed in the glial cells of sensory circumventricular organs including the subfornical organ, and was involved in [Na+] sensing for the control of salt-intake behavior. Although Nax was also suggested to b...

متن کامل

The subfornical organ is the primary locus of sodium-level sensing by Na(x) sodium channels for the control of salt-intake behavior.

Dehydration causes an increase in the sodium (Na) concentration and osmolarity of body fluid. For Na homeostasis of the body, controls of Na and water intake and excretion are of prime importance. However, the system for sensing the Na level within the brain that is responsible for the control of Na- and water-intake behavior remains to be elucidated. We reported previously that the Na(x) chann...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 290 3  شماره 

صفحات  -

تاریخ انتشار 2006